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An Enhanced Global Feature-Guided Network
Based on Multiple Filtering Noise Reduction

for Remote Sensing Image Compression
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Abstract— Remote sensing images obtained at high altitudes
often contain complete object or scene information, which makes
their global visual features richer compared to natural images.
In order to enhance the scope and multilevel characteristics
of global visual features of remote sensing images, this article
proposes an enhanced global feature-guided network based on
multiple filtering noise reduction (GFRNet) for remote sensing
image compression. First, a pyramid vision transformer (PVT)
is introduced into remote sensing image compression for the first
time. Based on this, a PVT compression branch (PVTCB) is
designed, which can capture multilevel global visual features
through a three-stage pyramid transformer module for image
compression (TPTC) and utilizes filters to accurately control the
output of TPTC. Second, a quadruple-filtered multicore noise
reduction attention module (QFMR-AM) is constructed in the
four-stage compression branch (FSCB) for denoising and enhanc-
ing multilevel features. Finally, a global visual feature guidance
module (GVGM) is designed between FSCB and the four-stage
reconstruction decoder (FSRD). By calculating the global visual
feature loss LossGVF through GVGM, a novel rate-distortion
LossTotal is constructed, making the network more focused on
extracting global information. Experimental results show that
compared with some advanced methods, the proposed GFRNet
achieves better compression performance on multiple evaluation
indicators. In addition, the reconstructed images obtained by the
proposed GFRNet can provide better classification performance,
which further proves that the proposed method helps to preserve
more important features of remote sensing images during the
compression process.

Index Terms— Multihead self-attention, noise reduction, pyra-
mid transformer, rate-distortion optimization, remote sensing
image compression.

I. INTRODUCTION

REMOTE sensing images have many unique land fea-
tures, such as land cover, topography, landform, and

temperature, which are usually not exhibited in natural
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images [1], [2]. Therefore, remote sensing images have been
widely used in many fields, such as environmental monitoring,
meteorology, and geological science [3], [4], [5], [6]. However,
remote sensing images are usually captured by satellites at
high altitude through the atmosphere, which inevitably has
more background noise [7]. In addition, remote sensing images
often contain complete object or scene information due to
high-altitude shooting. Compared with natural images, the
global visual features are richer [8]. This information has
an important impact on the compression of texture features.
Second, with the rapid development of remote sensing tech-
nology, the spatial and spectral resolution of remote sensing
images continue to improve, and the amount of data also
increase dramatically [9]. For these reasons, a specialized
compression method suitable for the characteristics of remote
sensing images is urgently needed.

At present, traditional image compression methods have
achieved some results [10], [11]. For example, Báscones et al.
[12] proposed a method to compress hyperspectral image data
by combining principal component analysis and JPEG2000.
The classical joint photographic experts group (JPEG) [13]
and JPEG2000 [14] are mainly composed of three parts: image
transformation, quantization, and entropy encoding. First, the
image is transformed and dequantized. Then, important infor-
mation is retained through quantification; Finally, the entropy
coding is used to compress the correlation coefficient. In addi-
tion, better portable graphics (BPG) [15], [16] and WebP [17]
with superior performance have been born in the field of
image compression. Li et al. [16] used the mean deviation
similarity index (MDSI) as an evaluation metric to improve
BPG. A two-step compression strategy is used to provide more
accurate remote sensing image quality control, which achieves
consistency in compression efficiency and image quality [16].
Traditional image compression methods can be classified into
vector quantization-based [18], predictive coding-based [19],
and transform-based coding algorithms [20]. Qian [21] pro-
posed a fast vector quantization compression algorithm for
multispectral images. The core of this method is to replace
the input vector with a codeword index that matches the
codebook, so as to optimize the efficiency of data trans-
mission and storage [21]. Three-dimensional (3-D)-multiband
linear predictor (MBLP) uses predictive technology. First,
spatially redundant information in the image is eliminated.
Second, the current frequency band is predicted. Finally, the
predicted residuals are encoded with the help of an entropy
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decoder [22]. In addition, 3-D-set partitioning in hierarchical
trees (SPIHT), as a transformation compression method for
3-D images, achieves efficient image compression by applying
3-D wavelet transform in the spatial and spectral domains [23].
However, traditional image compression methods have certain
limitations. For example, JPEG, JPEG2000, and BPG are not
designed to adjust the characteristics of remote sensing images.
Therefore, these methods are limited in the compression
performance of remote sensing images. Second, at high com-
pression ratios, most traditional image compression methods
exhibit relatively poor rate distortion performance. Finally, for
the characteristics of remote sensing images, such as high
information entropy, complex background noise, and abundant
global information, the common traditional methods cannot
make efficient adaptive adjustment. Therefore, these limita-
tions restrict the improvement of the compression performance
of remote sensing images.

In search of breakthroughs, researchers focus on deep learn-
ing technologies that have become hot in recent years [24],
[25]. Classic deep learning-based image compression frame-
works mainly include autoencoder (AE) [26], [27] and
variational AE (VAE) [28], [29]. Riccardo et al. [26] pro-
posed a deep convolutional AE-based compression network
to solve the problem of processing large-scale data volumes
generated by complex satellite instruments in the field of space
science and satellite imagery. The network has advantages
in both compression ratio and spectral signal reconstruction.
In addition, it shows good robustness for data types larger
than 8 bits [26]. Alves et al. [28] designed a low-complexity
VAE to meet the computational resource constraints in satellite
image compression. By reducing dimensions and simplifying
the entropy model, the encoder reduces complexity while
maintaining compression performance [28]. However, com-
pared with AE-based frameworks, VAE-based frameworks
have more powerful image reconstruction capabilities. The
reason for this is that VAE has a continuous mapping space
that AE does not have, and it can reconstruct images with
smooth transitions between pixels. In recent years, some
VAE-based baseline networks have been developed [30], [31],
[32], [33], [34], [35], [36], which have demonstrated superior
rate distortion performance compared with traditional image
compression methods. These VAE-based image compres-
sion networks usually consist of three components: encoder,
entropy encoder, and decoder. First, the neural network was
used to preliminarily compress the image data block. Then,
the compressed pixel data were mapped into a quantized
representation. Finally, these data are further compressed into a
bitstream form by traditional encoding techniques. In addition,
in order to model more accurately, some compression models
introduce entropy models, such as Laplace models, single-
core gaussian models, hybrid gaussian models, and factorized
entropy models into the framework to make full use of prior
information [37], [38], [39], [40], [41], [42]. Based on the
above theory, some scholars have developed many remote
sensing image compression networks based on deep learning
and achieved good rate distortion performance [43], [44], [45],
[46], [47], [48], [49], [50].

Compared with natural images, remote sensing images
contain rich global contextual features due to imaging at high
altitudes. However, most of the current methods extract global
information by introducing global feature modules into the
backbone network. There are two problems with this approach:
first, the global information obtained is relatively simple
and lacks diversity; second, the scope of global contextual
information is limited to the feature extraction process of local
networks. Therefore, how to comprehensively and effectively
extract global contextual information from remote sensing
images, increase the diversity of global contextual features,
and expand the scope of global contextual features has become
a serious challenge that urgently needs to be solved in the field
of remote sensing image compression.

In order to alleviate the above problems, this article pro-
poses an enhanced global feature-guided network based on
multiple filtering noise reduction for remote sensing image
compression (GFRNet). By improving the multilevel nature
of global information and expanding the influence range of
global information, the global features in remote sensing
images are enhanced, thereby improving the quality of recon-
structed images. GFRNet mainly consists of the following
parts: a dual-branch compression structure, including a pyra-
mid vision transformer compression branch (PVTCB) and a
four-stage compression branch (FSCB); entropy coding; and
four-stage reconstruction decoder (FSRD). GFRNet mainly
analyzes and optimizes from three aspects. First, remote
sensing images are typically captured by satellites in space
through complex clouds and atmospheres, inevitably carrying
a significant amount of background noise. To address this
issue, this article proposes a quadruple-filtered multicore noise
reduction attention module (QFMR-AM) for denoising and
enhancing multilevel features. Through multiple filters and
convolutions at different scales, it can effectively reduce com-
plex background noise. In addition, the efficient extraction,
enhancement, and fusion of features at different scales are
achieved. Second, the scope of the common global feature
extraction module is limited. To solve this problem, this
article constructs a global visual feature guidance module
(GVGM) between the compressed part and the reconstruc-
tion part. The proposed global visual feature loss LossGVF
is calculated by GVGM, and a new rate-distortion LossTotal
is constructed. This design efficiently applies global context
features to the entire network in the form of loss, thus
effectively enhancing the quality of the global features. Third,
the global features extracted by common methods lack hier-
archy. Therefore, this article builds a PVTCB, which captures
multilevel global information through the three-stage pyramid
transformer module for image compression (TPTC), and uses
filters to accurately control the output of TPTC, thereby
optimizing the compression effect of remote sensing images.
In summary, this article builds a high-performance GFRNet
based on the proposed PVTCB, FSCB, FSRD, QFMR-AM,
GVGM, and LossTotal.

This study conducted sufficient experiments. Experimental
results show that compared with some advanced compres-
sion methods, the proposed GFRNet can provide excellent
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compression performance in peak signal-to-noise ratio (PSNR)
and multiscale structural similarity index metric (MS-SSIM).

The main contributions of this article are summarized as
follows.

1) A QFMR-AM is proposed to achieve noise reduction
and multilevel feature enhancement. Through multiple
filters and convolution at different scales, the module
effectively reduces the complex background noise and
efficiently fuses features of different scales.

2) A GVGM is designed, which constructs a novel rate-
distortion LossTotal of the proposed network by calculat-
ing the global visual feature loss LossGVF between the
compression part and the reconstruction part. Through
this new loss, global features are efficiently applied to
the entire network.

3) The pyramid vision transformer (PVT) was introduced
into remote sensing image compression for the first
time. Based on this, a PVTCB is constructed, which
captures multilevel global information through a TPTC,
and utilizes filters to accurately control the output of
PVTCB to obtain multilevel global features.

4) This article effectively embeds PVTCB, FSCB, FSRD,
QFMR-AM, GVGM, LossTotal, and factorized entropy
model to construct a high-performance enhanced GFR-
Net for remote sensing image compression. Through a
large number of experiments on San Francisco, NWPU-
RESISC45 and UC-Merced, the superior compression
performance of GFRNet for remote sensing images is
fully proved.

The remainder of the study is organized as follows: in
Section II, relevant work will be discussed. In Section III,
the proposed GFRNet framework and the details of each
module are elaborated. In Section IV, this article comprehen-
sively analyzes and compares the proposed GFRNet and other
compression methods through a large number of experiments.
In Section V, conclusions and future work are discussed.

II. RELATED WORK

There are four main types of deep learning techniques used
for remote sensing image compression: image compression
methods based on convolutional neural networks (CNNs) [39],
[42], [43], [47], [48], image compression methods based on
transformer [40], [51], image compression methods based on
generative adversarial networks (GANs) [52], [53], and image
compression methods based on graph attention (GAT) [54].

A. CNN-Based Methods

In the CNN-based methods, Wang et al. [47] proposed a
remote sensing image compression framework using histor-
ical images as a reference. Through double-ended reference
downsampling encoding technology and correlation embed-
ding, it effectively eliminates time redundancy and spatial
redundancy and reduces spurious textures [47]. In addition,
Shao et al. [42] proposed a discrete wavelet transform gaus-
sian mixture model (DWTGMM) entropy model based on
discrete wavelet transform (DWT) and Gaussian mixture
model (GMM) for remote sensing image compression. The

model obtains sparse representations through DWT and then
uses GMM to model separately to estimate the probability
distribution, which effectively improves the compression per-
formance [42].

B. Transformer-Based Methods

In the transformer-based image compression methods, Li et
al. [40] proposed a remote sensing image compression method.
By distinguishing between objects and background areas and
optimizing global and local information encoding, it achieves
high-object fidelity compression at low bit rates [40]. In addi-
tion, Chuan et al. [51] proposed a remote sensing image
compression network based on transformer and CNN, which
can effectively reduce local and nonlocal redundancy and
achieve efficient compression. The three-stage training strategy
improves the generalization ability of the network, and the
performance is better than that of traditional algorithms [51].

C. GAN-Based Methods

In the GAN-based image compression methods,
Han et al. [52] proposed an edge-guided adversarial network
designed to preserve sharp edge and texture information at
the same time. It uses edge fidelity constraints to guide the
network to optimize image content and structure, thereby
solving the problem of local smoothness in the existing
methods [52]. In addition, Kan et al. [53] proposed a
remote sensing satellite image compression method based on
conditional GANs, which improved the quality and detail
of the reconstructed images by introducing the Laplacian of
Gaussian loss and perception metrics [53].

D. GAT-Based Methods

In the GAT-based image compression methods, Pan et
al. [54] proposed a hybrid attention compression network
(HACN) for remote sensing image compression. By introduc-
ing the residual attention module (RAM) and the lightweight
graph attention module (GAM), the network is able to capture
spatial and cross-channel long-distance dependencies in the
process of feature transformation [54].

Although the above methods achieve good compression
performance, the quality of the global features extracted by
these methods is relatively weak. Specifically, the influence
range of global features is limited, and global features lack
multilevel nature. These shortcomings lead to the suboptimal
rate distortion performance of these models.

III. METHODOLOGY

In this section, the proposed GFRNet, as well as modules,
such as QFMR-AM, GVGM, and PVTCB, will be introduced
in detail.

A. Overall Framework of the Proposed GFRNet

The proposed GFRNet enhances the global contextual
features of remote sensing images from the perspective of
increasing the multilevel nature of global features and expand-
ing the scope of global features, thereby improving the quality
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Fig. 1. Overall structure diagram of the proposed GFRNet.

of reconstructed images. It mainly includes QFMR-AM for
noise reduction and multiscale feature enhancement, GVGM
for efficient application of global features to the entire network
in the form of loss, and PVTCB for enhancing the multilevel
nature of global features in remote sensing images. QFMR-
AM consists of convolutions of different scales and four filters
(Filters1–4) for controlling the output. GVGM consists of three
submodules, including the multichannel enhancement block
(MCEB), the multihead self-attention module (MHSA), and
the global visual feature loss LossGVF. PVTCB consists of two
submodules, including TPTC and Filter5. In addition, in this
article, LossGVF is designed to construct a new rate-distortion
function LossTotal, so as to coordinate the work of the backbone
network and the proposed module.

Fig. 1 shows the overall structure of GFRNet. In this article,
four compression blocks in FSCB and four reconstruction
blocks in FSRD are designed by reasonably selecting the
size of the convolution kernel and reassigning the number of
channels, so as to achieve excellent compression performance
at low complexity. Table I lists the parameters of compres-
sion blocks 1–4 and reconstruction blocks 1–4. Probability

TABLE I
SPECIFIC PARAMETERS OF COMPRESSION BLOCK

AND RECONSTRUCTION BLOCK

models mainly include hyperprior networks (hyperencoder and
hyperdecoder), quantizer (Q), arithmetic encoding (AE), and
arithmetic decoding (AD). Table II lists the parameters of
hyperencoder and hyperdecoder. In this article, a superprior
network is used to learn the probability model on which
entropy coding depends. In addition, it is used to generate
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TABLE II
SPECIFIC PARAMETERS OF HYPE RENCODER AND HYPERDECODER

the parameters of the entropy model (mean parameter µi

and scale parameter σ 2
i ), which is modeled as conditional

gaussian. GVGM is used to calculate the global visual feature
loss LossGVF between the compressed and reconstructed parts,
where LossGVF represents the difference between the global
features of the compressed part and the global features of the
reconstructed part. The smaller the loss value, the smaller the
difference between the compressed part and the reconstructed
part, and the higher the quality of the extracted global features.
The loss here is mean squared error (MSE), which can be
expressed as (1). In rate-distortion optimization, R represents
the entropy rate, λ represents the penalty coefficient used to
control different bit rates, ŷ represents the latent representation
information, and ẑ represents the side information

MSE =
1
m

m∑
i=1

(X̂ − X)2 (1)

where m denotes the number of pixels, X̂ denotes the recon-
structed image, and X denotes the original image.

In Tables I and II, N represents the number of channels,
↓ represents the downsampling, ↑ represents the upsampling,
and RELU represents the linear rectification function. GDN
stands for generalized split normalization function and IGDN
stands for its inverse operation, which are nonlinear activation
functions and are more suitable for normalizing image data
than other normalization functions.

Here is how GFRNet works as a whole.
1) Compression: The remote sensing data block on a branch

is PVTCB to obtain multilevel global features. On the
other branch, the remote sensing data block obtains the
shallow features after removing noise through compres-
sion block 1, QFMR-AM and compression blocks 2–3,
and then inputs them into GVGM to obtain the global
features (here, the global features wait for the subsequent
feature alignment. On the one hand, it is returned to
the network and is used to strengthen the quality of
the global features). Then, the remote sensing data are
input into compression block 4 and further compressed
to obtain deep features. The features of the two branches
are then fused and fed into the traditional codecs for
further compression and probabilistic modeling.

2) Reconstruction: The bitstream that the model will get
is reconstructed step by step. The remote sensing data
are input into reconstruction block 4 for the first step of
reconstruction, and the output feature maps of compres-
sion block 3 and reconstruction block 4 are input into

GVGM for global feature alignment. Here, GVGM plays
two roles: on the one hand, the difference between the
global features of the compressed part and the recon-
structed part is transmitted to the overall loss through
LossGVF, so as to expand the scope of the global feature.
On the other hand, GVGM will return the extracted
global features to the network, thereby enhancing the
quality of global features. After that, the obtained remote
sensing data were successively reconstructed by recon-
struction block 3, reconstruction block 2, QFMR-AM,
and reconstruction block 1.

B. Quadruple Filtered Multicore Noise Reduction Attention
Module

Remote sensing images are usually captured by satellites
through complex atmospheric layers and inevitably have a lot
of background noise. In addition, hyperspectral images usually
have hundreds of bands, which can ensure the validity of the
extracted features by extracting features in the band with less
noise. However, remote sensing images usually have only a
few bands, and there are fewer bands to choose from. There-
fore, the noise in remote sensing images will bring serious
negative effects to the tasks, such as object detection, scene
classification, image compression, and so on. In this article,
QFMR-AM is designed for the complex background noise in
remote sensing images. The module uses multiple filters and
multiscale convolution techniques to reduce background noise
while efficiently extracting, enhancing, and fusing features at
different scales.

Common noises in remote sensing images include speckle
noise and salt-and-pepper noise. Speckle noise refers to the
small areas of an image that have random abrupt changes
in brightness or color. Salt-and-pepper noise, also known as
impulse noise, is a random occurrence of white and black dots
in an image. These noises manifest themselves in different
ways, but they are essentially abrupt changes in pixel values.
The essence of convolution is the linear addition of pixels in
the local area, which alleviates the problem of pixel numerical
mutation caused by noise, and the larger the convolutional
kernel, the more noise can be reduced. Therefore, a four-
branched QFMR-AM is constructed to effectively eliminate
the influence of noise. The structure of the QFMR-AM is
shown in Fig. 2. Data A in the Filter2 branch can be expressed
as

X = Conv3×3(Input) (2)

where Input represents the input image data block, and
Conv3×3 represents a convolutional layer with a convolutional
kernel size of 3.

The work process of the branch of Filter1 can be expressed
as

IFilter1 = Filter1(Avgpool2D3×3(Conv1×1(Input))⊙ X) (3)

where Conv1×1 represents the point convolution,
Avgpool2D3×3 represents the average pooling, ⊙ represents
the Hadamard product, Filter1 represents filter 1, and IFilter1
represents the output of the Filter1 branch.
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Fig. 2. Schematic of QFMR-AM. (Input represents the input feature map, output represents the output feature map, Filters1–4 represents filters with different
mapping coefficients, that is, the pixel values of the feature map are mapped to a reasonable range. The mapping coefficient is 0.3 for Filter1, 0.7 for Filter2,
0.7 for Filter3, and 0.3 for Filter4. Conv2D 1 × 1 N /4 N /4 represents the parameter settings of the convolution, where 1 × 1 represents the size of the
convolution kernel and N /4 represents the number of channels.)

The work process of the branch of Filter2 can be expressed
as

IFilter2 = Filter2(Conv3×3(Input)) (4)

where Input represents the input image data block, Conv3×3
represents a convolutional layer with a convolutional kernel
size of 3, Filter2 represents filter 2, and IFilter2 represents the
output of the Filter2 branch.

The work process of the branch of Filter3 can be expressed
as

IFilter3 = Filter3(Maxpool2D3×3(Conv5×5(Input))⊙ X) (5)

where Conv5×5 represents a convolutional layer with a con-
volutional kernel size of 5, Maxpool2D3×3 represents the
maximum pooling, Filter3 represents filter 3, and IFilter3 rep-
resents the output of the Filter3 branch.

The work process of the branch of QFMR-AM can be
expressed as

IQFMR-AM = IFilter1 ⊕ IFilter2 ⊕ IFilter3 ⊕ IFilter4 (6)

where IFilter4 represents the output of the Filter4 branch, ⊕

represents the pointwise addition, and IQFMR-AM represents the
output of QFMR-AM.

Specifically, the Filter1 branch uses point convolution to
extract a high-frequency feature with small-kernel convolution,
which will contain more noise information. So, Filter1 limits
it to a smaller pixel value by mapping, where the mapping
coefficient is 0.3. The convolution kernels of the Filter2 and
Filter3 branches are 3 × 3 and 5 × 5, respectively, which are
used to obtain multiscale features in remote sensing images,
and Filter2 and Filter3 map the features to larger pixel values
as the backbone of this module. The mapping coefficient for
Filter2 and Filter3 is 0.7. The Filter4 branch is similar to
a residual structure that is used to speed up the training of

the network and prevent overfitting. Unlike the residuals, this
article adds a filter to this branch and maps it to smaller pixel
values. This prevents the noise from the original block from
being introduced into the final feature map again with the
same high impact. In summary, the core function of the four
filters here is a linear mapping of pixel values. The mapping
coefficients of Filter1 and Filter4 are set at small values, and
the main reason is that the point convolution in the Filter1
branch does not alleviate the problem of abrupt change of pixel
values and still contains a certain amount of noise. The Filter4
branch, on the other hand, is similar to the residual branch and
still contains a certain amount of noise. Therefore, the filter
mapping coefficients of these two branches are set at a small
value to reduce the effect of noise. In addition, convolution of
different scales is used in the branches of Filter2 and Filter3,
which fully alleviates the problem of numerical mutation
caused by noise. Therefore, the mapping coefficient of these
two branches is set at a large value, so that these two branches
become the backbone of QFMR-AM. In addition, this module
introduces Avgpool2D between Filter1 and Filter2 branches
and Maxpool2D between Filter3 and Filter4 branches. In this
way, the interaction between features of different scales is
enhanced. Finally, the feature maps of the Filter1, Filter2,
Filter3, and Filter4 branches are fused together by pointwise
addition. Due to the filter’s reasonable restriction and alloca-
tion of the output of each branch, the pixel values of the final
features are still within a reasonable range.

C. Global Visual Feature Guidance Module

Remote sensing images have abundant global information,
but the common way to obtain global features mainly exists
in a certain part of the network in the form of a module. The
global features extracted by these methods are either applied
to a certain part or a certain branch, and their influence range
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Fig. 3. Schematic of GVGM. (InputA represents the output feature map of compression block 3, and InputB represents the output feature map of reconstruction
block 4, OutputA represents the processed global features of the compression part, and OutputB represents the processed global features of the reconstruction
part. “GVGM for compression” represents the GVGM used to calculate the global features of the compressed part. “GVGM for reconstruction” represents
the GVGM used to calculate the global features of the reconstructed part. LossGVF represents the difference between the global features of the compressed
part and the global features of the reconstructed part, and this loss is MSE.)

is limited. Therefore, this article designs GVGM, which can
apply global features to the entire network in the form of
loss. The structure of GVGM is shown in Fig. 3. It mainly
includes three core components, namely, MCEB for extracting
multichannel features, MHSA for extracting global features,
and LossGVF for calculating the difference in global features
between the compression part and the reconstruction part.

MCEB uses three convolutions with kernel sizes of 1 × 1 to
extract and enhance multichannel features. The reason for
using multiple channels for spatial information extraction is
that the size of the MCEB input feature map is relatively
large, which leads to more spatial information to be extracted.
Therefore, the low information capacity of a single channel
will lead to the loss of part of the spatial information. The
reason for adding the three features is that this makes the pixel
values larger, which increases the difference between the
different features and makes the output features more suitable
for MHSA.

The process of MCEB can be represented as

IMCEB = Conv1×1(Input)+ Conv1×1(Input)
+ Conv1×1(Input) (7)

where Input represents the input image data block, Conv1×1
represents point convolution, and IMCEB represents the output
of MCEB.

Another core component is MHSA: in recent years, vision
transformer (ViT) has been widely used in the field of

computer vision (CV). Its powerful long-range feature capture
capability makes the ViT model excellent for a wide range
of tasks. This capability is mainly due to its core module,
the self-attention mechanism. MHSA introduces a multihead
mechanism on the basis of self-attention, which not only
improves the training speed but also realizes the fusion of dif-
ferent subspace features. MHSA maps remote sensing image
data to different projection spaces through Feature1, Feature2,
and Feature3. It uses tensor multiplication to fuse the features
of different spaces, thereby enhancing the global features.

The process of the MHSA can be represented as

IMHSA = Conv3×3(Linear(Feature3

⊗ (Dropout(Soft max(Feature1 ⊗ Feature2))) (8)

where Conv3×3 represents convolution, Linear represents the
linear layer, Dropout represents the randomly deactivated
layer, Soft max represents the softmax layer, and ⊗ represents
the matrix multiplication.

The last core component is LossGVF, which calculates the
difference between the global features of the compressed part
and the global features of the reconstructed part, and inputs
the difference of this global feature into LossTotal. The reasons
are as follows.

1) The network can reduce the difference between the
global features of the compressed part and the global
features of the reconstructed part by decreasing the
LossGVF. In this way, the similarity between the global
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Algorithm 1 The Feature Extraction Process of Remote Sensing Images by GVGM
Input: Remote sensing data XCompression ∈ Rb×c×h×w, XReconstruction ∈ Rb×c×h×w

1: Stage1:
2: Perform MCEB, XCompression ∈ Rb×c×h×w denoted as X1 ∈ Rb×c×h×w

3: Perform Flatten, Reshape and Linear, the result denoted as attn ∈ Rb×n×3c

4: Perform Split and Reshape, the result denoted as Feature1 ∈ Rb×n×c, Feature2 ∈ Rb×n×c and Feature3 ∈ Rb×n×c

5: Perform Reshape and Transpose, the result denoted as Feature1 ∈ Rb×head×n×headd, Feature2 ∈ Rb×head×headd×n , Feature3 ∈

Rb×head×n×headd

6: Perform MatrixMultiplication of Feature1 ∈ Rb×head×n×headd and Feature2 ∈ Rb×head×headd×n , and then perform Softmax,
Dropout, the result denoted as attn1 ∈ Rb×head×n×n

7: Perform MatrixMultiplication of attn1 ∈ Rb×head×n×n and Feature3 ∈ Rb×head×n×headd, the result denoted as attn2 ∈

Rb×head×n×headd

8: Perform Transpose, Flatten, Linear, the result denoted as attn3 ∈ Rb×n×c

9: Perform Transpose, Reshape, the result denoted as attn4 ∈ Rb×c×h×w

10: Perform Conv3×3, the result denoted as attnGVGM(Compression) ∈ Rb×c×h×w

11: Stage2:
12: Replace the input with XReconstruction ∈ Rb×c×h×w, and perform Stage 1, the result denoted as attnGVGM(Reconstruction) ∈

Rb×c×h×w

13: Stage3:
14: Calculate the MSE between attnGVGM(Compression) ∈ Rb×c×h×w and attnGVGM(Reconstruction) ∈ Rb×c×h×w, the result denoted as
LossGVF

end for
Output: attnGVGM(Compression) ∈ Rb×c×h×w, attnGVGM(Reconstruction) ∈ Rb×c×h×w and LossGVF.

features of the compressed part and the global features
of the reconstructed part is improved, and the quality of
the global features is improved.

2) LossGVF is introduced into LossTotal, so that the influence
of the global feature is propagated to the entire network.
In this way, the limitation of the scope of the global
feature extraction module is solved.

The process of LossGVF can be represented as

LossGVF = LMSE(IMHSA(Compression), IMHSA(Reconstruction)) (9)

where LMSE represents the loss measured using MSE,
IMHSA(Compression) represents the output of the MHSA of the
compressed part, IMHSA(Reconstruction) represents the output of
the MHSA of the reconstructed part, and LossGVF represents
the loss of global visual features.

The feature extraction process of GVGM is described in
Algorithm 1.

D. Pyramid Vision Transformer Compression Branch

Transformer initially made its mark in the field of natural
language processing (NLP), with its self-attention mechanism
making it adept at processing sequence data. As research
deepened, scientists discovered that its potential was not
limited to language and began to try to introduce it into the
field of CV. By applying transformer to image data, researchers
aim to capture global dependencies in images to improve
tasks, such as image recognition and object detection, and
have achieved good research results. However, no one has
introduced PVT into the field of remote sensing image com-
pression [55]. Therefore, for the first time, we have introduced
it into the field of remote sensing image compression and
make targeted optimization to make it more suitable for image

compression tasks. Common transformer has some drawbacks:
1) the self-attention mechanism of the standard transformer
causes significant computational and memory overhead when
processing large images, because it performs pairwise attention
calculations on all elements in the input sequence and 2)
transformer typically outputs single-scale feature maps, which
limits its application in tasks that require high-resolution out-
put, such as pixel-level tasks. However, the PVT solves these
problems well. First, PVT uses a pyramid structure to generate
multiscale feature maps, which makes the model suitable for
downstream tasks with different resolutions, especially for
dense prediction tasks, such as object detection and semantic
segmentation. Second, it uses fine-grained image blocks (4 ×

4 pixels) as an input to learn high-resolution representations.
Finally, spatial-reduction attention (SRA) is introduced, which
effectively reduces the computation and memory consumption
by reducing the dimensionality of the input space dimension
before attention calculation. This enables PVT to handle
high-resolution tasks more efficiently.

In our study, PVT is introduced into remote sensing image
compression for the first time. It is improved to be more
suitable for remote sensing image compression tasks. In this
article, PVTCB is designed to increase the multilevel nature
of the global feature. The structure of PVTCB is shown in
Fig. 4. The process of PVTCB can be represented as

IPVTCB = Filter5

(
Stage3B×C4×

H
16 ×

W
16

(
Stage2B×C3×

H
8 ×

W
8

×

(
Stage1B×C2×

H
4 ×

W
4
(Input)

)))
(10)

where B represents the batches, C represents the channels, H
represents the height of the image, W represents the width of
the image, Filter5 represents filter 5, and IPVTCB represents the
output of PVTCB.
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Fig. 4. Schematic of PVTCB, which is generally divided into two parts. The first part is TPTC (light yellow part in the figure), which consists of three
stages, each of which consists of a patch embedding layer and a transformer encoder. According to the structure of the pyramid, the size of the data block
changes from large to small, and the dimension changes from low to high dimension. The second part is Filter5, which has a mapping coefficient of 0.3.

The main function of PVTCB is to reduce the spatial size
of remote sensing data blocks. Stage1 reduces the spatial size
of the data to one-fourth of the original size, Stage2 reduces
the spatial size of the data to half of the original size, and
Stage3 reduces the spatial size of the data to half of the
original size. In this way, the shallow remote sensing image
features are compressed into deep features. PVTCB consists
of two core components, including TPTC and Filter5. The
original PVT consists of four stages. These four stages can
be seen as four more complex downsampling. As the stage
deepens, the size of the data block gradually decreases, and
the number of channels increases. However, PVT reduces the
size of the data block excessively and has a large number
of parameters. Therefore, this article reconstructs the stage
number and the key parts of the model to construct a TPTC
that is more suitable for remote sensing image compression.
The stage number has been refactored to three, which greatly
reduces the complexity of the model. In this way, the output of
PVTCB and the output of FSCB can be matched. In addition,
the number of embedded dimensions for each stage is set to
[64, 160, 256], which improves the model’s ability to obtain
channel features. The number of heads in each stage is set
to [2], [4], and [8] to enhance the fusion of information in
different subspaces. The encoder stacking depth of each stage
is set to [2, 2, 2]. The space reduction scale of the sublayer
is set to [4, 2, 1] to preserve more channel features. Finally,
Filter5 is added to the end of TPTC to limit the pixel values of
the multilevel global feature map to a reasonable range, so as
to facilitate effective fusion with the output features of FSCB.

E. Rate-Distortion Optimization

The training goal of the compression framework is to
achieve a balance between compression and distortion.
To achieve this, a rate distortion optimization strategy is often
added to the compression framework to guide the model for
efficient training. In short, the strategy is designed to ensure
that the data are compressed with as little information loss
as possible. The rate distortion optimization strategy can be
represented as

arg min LossTotal = R + λ D (11)

where R represents entropy rate, which is the cross-entropy
between the latent edge distribution and the learning entropy
model. D represents distortion between the original image and
the reconstructed image. Different bitrates can be controlled
by adjusting the penalty coefficient λ

R = R ŷ + Rẑ (12)

where the bitrate consists of the latent representation informa-
tion ŷ together with the side information ẑ

R ŷ = −

∑
i

log2(pŷ(ŷ)) (13)

Rẑ = −

∑
i

log2(pẑ(ẑ)) (14)

where pŷ is an entropy model that can be learned, and p̂z

represents the hyperencoder.
In order to further improve the quality of image compres-

sion, a novel rate distortion optimization strategy is proposed
in this article. LossGVF is introduced into LossTotal, so that the
influence of the global feature is propagated to the entire net-
work. This improves the quality of global features throughout
the network. This novel rate distortion optimization strategy
can be expressed as

arg min ProposedLossTotal = R + λ (D + ψLossGVF) (15)

where ψ represents the coefficient of LossGVF.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Sufficient experiments have been carried out on some
remote sensing image datasets, including San Francisco [56],
NWPU-RESISC45 [57], and UC-Merced [58]. These datasets
contain a wealth of ground object information, which can
effectively evaluate the performance of GFRNet. In this arti-
cle, GFRNet is compared with some excellent compression
methods, including traditional codecs and deep learning-based
compression models, to verify the superiority of the proposed
method. Traditional image compression methods include
JPEG2000 [14], BPG [59], and WebP [17]. Compression
models based on deep learning include Minnen et al. [31],
Minnen et al. (mean) [31], Ballé et al. (hyperprior) [32], Ballé
et al. (factorized-relu) [32], and Tong2023 [60]. Experimental
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Fig. 5. Some images from San Francisco dataset. (a) Buildings, (b) coastline,
(c) highway, (d) basketball court, (e) tennis court, (f) harbor, (g) parking lot,
(h) forest, (i) farmland, and (j) lake.

Fig. 6. Some images from NWPU-RESISC45 dataset. (a) Airport, (b) bas-
ketball court, (c) beach, (d) bridge, (e) desert, (f) church (g) clouds (h) forest,
(i) port, and (j) island.

results show that the proposed GFRNet has the best compres-
sion performance in both PSNR and MS-SSIM. In addition,
the quality of the reconstructed images obtained by different
compression methods is evaluated through the classification
task, which further verifies the superiority of GFRNet.

A. Introduction to Remote Sensing Image Dataset

1) Dataset San Francisco: San Francisco is a dataset of
remotely sensed images from [56]. It is a remote sensing
image with a resolution of 17 408 × 17 408, covering a variety
of feature information, such as buildings, coasts, highways,
ports, lakes, and so on. In this article, it is cropped to images
with size 256 × 256, and 3000 valid images are selected to
form the dataset. These images are divided into a training set,
a validation set, and a test set at a ratio of 8:1:1. Fig. 5 shows
some of the samples.

2) Dataset NWPU-RESISC45: NWPU-RESISC45 is pro-
vided by Northwestern Polytechnical University (NWPU).
The dataset contains a total of 45 different remote sensing
image scene categories. Each category contains 700 images,
each with a resolution of 256 × 256 pixels. The dataset
contains a variety of geographical environments and scenarios,
including airports, deserts, churches, forests, and so on. The
140 images in each category were selected to form a dataset
of 6300 remote sensing images, which was then divided into
a training set, a validation set, and a test set at a ratio of 8:1:1.
Fig. 6 gives some of the samples.

3) Dataset UC-Merced: UC-Merced is a remote sens-
ing image dataset provided by the University of California,
Merced. The UC-Merced dataset consists of 21 different cate-
gories, each consisting of 100 images. A total of 2100 images
are included, each with a resolution of 256 × 256 pixels. The
images include farmland, airports, forests, and other landform

Fig. 7. Some images from UC-Merced dataset. (a) Farmland, (b) airplanes,
(c) baseball stadiums, (d) beaches, (e) buildings, (f) forests, (g) roads, (h) golf
courses, (i) ports, and (j) overpasses.

scenes. The dataset UC-Merced is divided into a training set,
a validation set, and a test set at a ratio of 8:1:1. Fig. 7 shows
some of the samples.

B. Evaluation Indicators

To evaluate the quality of reconstructed images, two com-
monly used evaluation metrics are adopted, i.e., PSNR and
MS-SSIM. In the part of remote sensing scene image classifi-
cation, the overall accuracy (OA) and confusion matrix (CM)
are also used to measure the classification performance.

1) Peak Signal-to-Noise Ratio: PSNR compares the recon-
structed image to the original image from the point of view
of the mean square error. The higher the PSNR value, the
higher the fidelity of the reconstructed image. The PSNR can
be expressed as

PSNR(X, X̂) =
1
C

C∑
i=1

10 log10

(
max2(X i )

MSEi

)
(16)

where MSE represents the mean square error between the orig-
inal image and the reconstructed image. max2(X (i)) represents
the square of the largest pixel in band i . C represents the
number of bands.

2) Multiscale Structural Similarity Index Metric: MS-SSIM
is a multiscale structural similarity index. It measures the
difference between the original image and the reconstructed
image by merging image details at different resolutions. The
value ranges from 0 to 1, with higher values indicating higher
similarity and higher quality of the reconstructed image. The
formula for MS-SSIM can be expressed as

DMS-SSIM

= 1 −

M∏
m=1

 2µXµ⌢
X

+ C1

µ2
X + µ2

⌢
X

+ C1

αm
 2σ

X
⌢
X

+ C2

σ 2
X + σ 2

⌢
X

+ C2

ζm

(17)

where M represents different resolutions, µX and µ⌢
X

represent
the mean of the original image and the reconstructed image,
respectively, σX and σ⌢

X
represent the standard deviation

between the original image and the reconstructed image,
respectively, σ

X
⌢
X

represents the covariance between the orig-
inal image and the reconstructed image, αm and ζm represent
the relative importance between the two terms, and C1 and C2
are constant terms to prevent the divisor from being 0.

In order to clearly compare the differences in MS-SSIM
values, they are converted into decibel values. This process
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Fig. 8. Rate distortion curves on San Francisco. (a) PSNR and (b) MS-SSIM.

can be expressed as

MS-SSIM = −10 log10(1 − DMS-SSIM). (18)

3) Classification Indicators of Remote Sensing Scenes: In
this article, two widely used remote sensing scene classifica-
tion evaluation indicators are selected to measure the quality
of the reconstructed image, including OA and CM. The OA
value is obtained by dividing the number of correctly classified
images by the total number of test images, and it reflects the
overall performance of a classification model. CM reflects the
degree of confusion and detailed classification errors between
different scene categories. Each row in the CM represents
the true category, and each column represents the predicted
category.

C. Experimental Environment and Parameter Settings

In this study, the proposed GFRNet is implemented by
PyTorch. The Adam optimizer was chosen. There are two
optimizers in this network, one is the main optimizer between
the main encoder (PVTCB and FSCB) and the main decoder
(FSRD), and the other is the auxiliary optimizer between the
hyperencoder and the hyperdecoder. For the main optimizer,
the initial learning rate is set at 10−4, and the optimal model
of GFRNet will be stored when the learning rate decays to
10−6 during network training. For the auxiliary optimizer,
its initial learning rate is set at 10−3. During training, the
batch size is set to 8. In this experiment, the neural network
models are trained on an NVIDIA GeForce RTX 3090, and
the traditional codecs are performed on a CPU (i9-9900K CPU
at 3.60 GHz). For the sake of fairness, all experiments in
this article were conducted in the above environment. The
penalty coefficient λ used in this article is [0.660, 0.508,
0.211, 0.072, 0.033, 0.013, 0.007]. The mapping coefficients
of filters 1–5 are [0.3, 0.7, 0.7, 0.3, 0.3, 0.3]. In GVGM,
the number of heads in the MHSA is set to 4. In the
proposed rate distortion optimization strategy, the coefficient
ψ of LossGVF is set to 0.065. N is set to 256 in compression
block, reconstruction block, hyperencoder, and hyperdecoder.
In the classification of remote sensing scenes, the benchmark
model used for testing was efficient multiscale transformer

and cross-level attention learning (EMTCAL) [61]. The dataset
used for training is NWPU-RESISC45, and the training-to-test
ratio is 10%–90%. The images used for compression and the
images used for remote sensing scene classification training
are not crossed. The reconstructed images are only used for
testing the classification performance, not for the training of
the classification network.

D. Rate Distortion Performance

In this experiment, all models were evaluated for rate
distortion performance by PSNR and MS-SSIM. In this article,
eight comparison methods are selected, including three tradi-
tional image compression methods and five image compression
methods based on deep learning. Figs. 8–10 show the rate dis-
tortion performance curves obtained by different compression
methods on the dataset San Francisco, NWPU-RESISC45, and
UC-Merced, respectively. In traditional image compression
methods, BPG shows better rate distortion performance than
WebP and JPEG2000 in most cases. This is mainly due to
BPG’s multichannel coding technology. This technique allows
for independent encoding of different color channels, which
in turn enables fine control over detailed features, helping to
reconstruct high-quality images. For the image compression
methods based on deep learning, the rate-distortion perfor-
mance demonstrated by Ballé et al. (factorized-relu) [32] is
relatively poor. This is mainly due to the fact that it employs
only simple convolutional layers, which have limited capa-
bilities in feature extraction. Although the feature extraction
ability can be improved to a certain extent by increasing
the number of convolutional layers, this will significantly
increase the number of parameters of the model and prolong
the reconstruction time. On the dataset NWPU-RESISC45 and
UC-Merced, the Tong2023 method achieves the highest PSNR
and MS-SSIM rate distortion performance except GFRNet.
This is mainly due to its excellent attention mechanism and a
more reasonable residual convolution module. However, on the
dataset San Francisco, the rate distortion performance of the
Tong2023 method is poor, which indicates that the compres-
sion model is less robust. The other comparison methods
based on deep learning have average performance, mainly
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Fig. 9. Rate distortion curves on NWPU-RESISC45. (a) PSNR and (b) MS-SSIM.

Fig. 10. Rate distortion curves on UC-Merced. (a) PSNR and (b) MS-SSIM.

because they lack a strong attention mechanism and excellent
rate distortion optimization strategies. GFRNet proposed in
this article achieves the highest PSNR and MS-SSIM rate
distortion performance on three datasets at the same time.
On the dataset San Francisco, specifically, at 1.1 bpp, GFRNet
achieves PSNR improvements of 9.3%, 11.0%, 9.9%, 24.1%,
and 12.2% compared to that of Minnen et al. [31], Minnen
et al. (mean) [31], Ballé et al. (hyperprior) [32], Ballé et al.
(factorized-relu) [32], and Tong2023, respectively. In addition,
GFRNet achieves MS-SSIM improvements of 6.5%, 10.6%,
8.6%, 31.1%, and 11.8% compared to that of Minnen et al.
[31], Minnen et al. (mean) [31], Ballé et al. (hyperprior) [32],
Ballé et al. (factorized-relu) [32], and Tong2023, respectively.
This superior rate distortion performance not only strongly
proves the robustness of GFRNet but also strongly proves
the effectiveness of PVTCB, QFMR-AM, GVGM, and the
proposed rate distortion optimization strategy in GFRNet.

E. Visualization Comparison of Reconstructed Images

In order to further verify the effectiveness of GFRNet, this
article visually compares the reconstructed images of different
methods. Figs. 11 and 12 are the reconstructed images on
the dataset San Francisco and the dataset UC-Merced, respec-
tively, and their local enlarged images. The images in the
visualization experiment were all reconstructed images with

a bit rate of 0.25 bpp. Taking Fig. 11 as an example, from
left to right, the reconstructed image of the original image,
the reconstructed image of the eight comparison methods, and
the reconstructed image of GFRNet. In the traditional image
compression method, the rate distortion performance of BPG
is significantly better than that of JPEG2000 and WebP. In the
enlarged image of the reconstructed image, compared with
JPEG2000 and WebP, the roof of the BPG method retains
more texture information. However, the JPEG2000 and WebP
reconstruction areas have lost most of the detail features and
are blurry. The main reason for this phenomenon is that the
BPG method has a multichannel encoding technique, which
has a stronger ability to reconstruct detailed features. The
comparison method based on deep learning generally achieves
better visualization than the traditional image compression
method, but it is still inferior to GFRNet. In Fig. 11, some
artifacts and noise are prevalent in the reconstructed images of
Minnen et al. [31], Minnen et al. (mean) [31], Ballé et al. [32],
and Ballé et al. (factorized-relu) [32]. This results in a blurry
image. The transitions between the pixels of the reconstructed
image of these four comparison methods are too coarse, which
leads to color flattening and distortion. Finally, comparing
Tong2023 with GFRNet, the tree of the enlarged image in
GFRNet retains more texture features and sharper edges of
objects. As a result, GFRNet achieved the best visualization
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Fig. 11. Visual comparison of reconstructed images obtained by different methods on the dataset San Francisco. (a) Original, (b) Minnen et al. [31] (bpp:
0.252; PSNR: 29.92; MS-SSIM: 7.91), (c) Minnen et al. (mean) [31] (bpp: 0.249; PSNR: 29.38; MS-SSIM: 7.36), (d) Ballé et al. (hyperprior) [32] (bpp:
0.251; PSNR: 29.53; MS-SSIM: 7.47), (e) Ballé et al. (factorized-relu) [32] (bpp: 0.252; PSNR: 29.25; MS-SSIM: 7.49), (f) Tong2023 (bpp: 0.252; PSNR:
30.28; MS_SSIM: 8.10), (g) JPEG2000 (bpp: 0.262; PSNR: 22.27; MS-SSIM: 1.15), (h) Webp (bpp: 0.255; PSNR: 22.71; MS-SSIM: 1.19), (i) BPG (bpp:
0.270; PSNR: 23.96; MS-SSIM: 1.93), and (j) GFRNet (bpp: 0.252; PSNR: 30.10; MS-SSIM: 8.26).

Fig. 12. Visual comparison of reconstructed images obtained by different methods on the dataset UC-Merced. (a) Original, (b) Minnen et al. [31] (bpp:
0.249; PSNR: 30.37; MS-SSIM: 6.10), (c) Minnen et al. (mean) [31] (bpp: 0.248; PSNR: 30.05; MS-SSIM: 5.69), (d) Ballé et al. (hyperprior) [32] (bpp:
0.249; PSNR: 30.39; MS-SSIM: 6.18), (e) Ballé et al. (factorized-relu) [32] (bpp: 0.250; PSNR: 28.93; MS-SSIM: 5.30), (f) Tong2023 (bpp: 0.251; PSNR:
29.59; MS-SSIM: 5.11), (g) JPEG2000 (bpp: 0.261; PSNR: 16.82; MS-SSIM: 0.75), (h) Webp (bpp: 0.486; PSNR: 19.93; MS-SSIM: 2.46), (i) BPG (bpp:
0.276; PSNR: 18.49; MS-SSIM: 0.97), and (j) GFRNet (bpp: 0.249; PSNR: 30.76; MS-SSIM: 6.93).

on the dataset San Francisco. In addition, in Fig. 12, GFRNet
achieves the best visualization on the dataset UC-Merced. This
also verifies the robustness of GFRNet. The above experiments

fully prove the rationality of the three working principles of
GFRNet (removing complex background noise, enhancing the
multilevel characteristics of global features, and expanding the
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Fig. 13. Ablation results of different methods on the San Francisco dataset. (a) PSNR and (b) MS-SSIM.

Fig. 14. Ablation results of different methods on the NWPU-RESISC45 dataset. (a) PSNR and (b) MS-SSIM.

Fig. 15. Ablation results of different methods on the UC-Merced dataset. (a) PSNR and (b) MS-SSIM.

scope of global features) and the efficiency of the proposed
rate distortion optimization strategy.

F. Ablation Experiments

In this article, sufficient ablation experiments were carried
out to verify the effectiveness of the proposed components,
such as PVTCB, QFMR-AM, and GVGM. Figs. 13–15 are the
results of ablation experiments on the dataset San Francisco,
NWPU-RESISC45, and UC-Merced, respectively: 1) baseline
represents the baseline network; 2) GFRNet (PVTCB) stands
for the integration of PVTCB on the basis of baseline; 3) GFR-
Net (QFMR-AM) represents the integration of QFMR-AM
on the basis of baseline; 4) GFRNet (GVGM) stands for
GVGM integrated on the basis of baseline; and 5) GFRNet
stands for baseline, which integrates PVTCB, QFMR-AM,

and GVGM. It should be noted that the GVGM here includes
the proposed rate distortion optimization strategy. As can be
seen from Figs. 13–15, the rate distortion performance of
baseline is the lowest in most cases across all three datasets.
GFRNet (PVTCB) is better than baseline at the same bit rate,
which verifies the effectiveness of the method to improve
the quality of the reconstructed image by improving the
multilevel characteristics of global features. The rate distortion
performance of GFRNet (QFMR-AM) is also better than that
of baseline at the same bit rate, which proves that removing
complex background noise from remote sensing images is of
great significance. The rate distortion performance of GFRNet
(GVGM) is better than that of baseline at the same bit rate,
which fully demonstrates the positive impact of expanding
the scope of global features on improving the quality of
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TABLE III
COMPARISON OF DIFFERENT LOSS FUNCTIONS

TABLE IV
COMPARISON OF PARAMETERS AND PERFORMANCE OF DIFFERENT MAIN ENCODERS

the reconstructed image. In addition, GFRNet achieves the
best rate distortion performance at the same bit rate. This
phenomenon shows that PVTCB, QFMR-AM, and GVGM
achieve efficient feature extraction by removing background
noise, enhancing the multilevel characteristics of global fea-
tures, and expanding the scope of global features under the
guidance of the proposed rate distortion optimization strategy.

In addition, the function used to calculate the loss in GVGM
was ablated. We add GVGM on baseline and then replace the
MSE in GVGM with different losses. There are four types of
loss, including MSE, root mean square error (RMSE), mean
absolute error (MAE), and SmoothL1Loss. The MSE is used to
calculate the average of the squares of the difference between
the predicted value and the true value. RMSE is the square
root of MSE. MAE is used to calculate the average of the
absolute value of the difference between the predicted value
and the true value. SmoothL1Loss combines the advantages of
the L1 norm and the L2 norm. When the difference between
the predicted value and the true value is small, the L2 norm is
used; when the difference is large, the L1 norm is used, which
balances the effects of small and large errors. The results of
the experiment are shown in Table III. The dataset used here
is San Francisco. The results here are all around 0.36 bpp.
As can be seen from Table III, MSE achieves the best rate
distortion performance. The main reason for this is that MSE
is calculated by squaring and averaging the prediction error
(the difference between the true value and the predicted value)
for each sample. The squared operation amplifies the effect
of large errors, making the model more focused on reducing
predictions that are far from the true value. This sensitivity
helps the model to adjust the parameters more precisely during
training to reduce differences between global features.

In order to verify the effectiveness of the proposed
PVTCB, PVTCB is compared with two publicly available
convolution-based main encoders. Here, we have chosen the
two main encoders of the public network, Ballé et al. [32]
and Cheng et al. [33]. Then, the bpp is 1, and the test
parameters include GPU memory, floating point operations
(FLOPs), parameters, PSNR, and MS-SSIM. The result is
shown in Table IV. The dataset used here is San Francisco.
Through comparison, baseline + PVTCB achieved the best
PSNR, and the MS-SSIM value was almost the same as that of
the best baseline + Cheng. In terms of computing resources,

baseline + PVTCB is slightly more than baseline + Balle,
but far less than baseline + Cheng. In terms of GPU memory,
FLOPs, and parameters, baseline + PVTCB is only 72.5%,
13.2%, and 72.1% of baseline + Cheng, respectively. This
shows that PVTCB achieves high rate distortion performance
with low complexity. The main reason for this phenomenon
is that although PVTCB uses the transformer framework, the
number of stages is reduced, and all parameters (including the
number of dimensions, the number of heads in self-attention,
and the stacking depth) are optimized.

In addition, the visualization of ablation experiments for
each module was performed. Among them, GFRNet (PVTCB),
GFRNet (QFMR-AM), and GFRNet (GVGM) are 0.988%,
1.019%, and 0.618% higher than that of baseline on PSNR,
respectively. GFRNet (PVTCB), GFRNet (QFMR-AM), and
GFRNet (GVGM) were increased by 0.189%, 2.741%, and
2.363%, respectively, compared with baseline on MS-SSIM.
The visualization results are shown in Fig. 16, and three
modules show good visualization results with little to no noise,
and the high-quality global characteristics are retained. This
is mainly due to the noise suppression by QFMR-AM and the
enhancement of global features by GVGM and PVTCB. This
fully verifies the effectiveness of each module.

G. Generalization Experiments of Modules

In order to verify the generalization performance of the
proposed PVTCB, QFMR-AM and GVGM, some generaliza-
tion experiments are carried out. It should be noted that the
GVGM here includes the proposed new rate distortion opti-
mization strategy. In this article, a public deep learning-based
image compression algorithm (Ballé et al. (factorized-relu)
[32]) is selected as the baseline network, and then, each
module is embedded into the baseline network to verify the
generalization of the module. The dataset used here is San
Francisco. Fig. 17 shows the rate distortion performance curve
of the network after the introduction of each module. The
distortion rate performance of the baseline network Ballé et al.
(factorized-relu) [32] is at the lowest. After introducing the
corresponding modules, Ballé et al. (factorized-relu) (PVTCB)
[32], Ballé et al. (factorized-relu) (QFMR-AM) [32], and
Ballé et al. (factorized-relu) (GVGM) [32] have all achieved
effective improvements in terms of PSNR and MS-SSIM. This
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Fig. 16. Visual comparison of reconstructed images obtained by baseline with different modules on the dataset San Francisco. (a) Original, (b) baseline
(bpp: 0.371; PSNR: 32.38; MS-SSIM: 10.58), (c) GFRNet (PVTCB) (bpp: 0.371; PSNR: 32.70; MS-SSIM: 10.60), (d) GFRNet (QFMR-AM) (bpp: 0.363;
PSNR: 32.71; MS-SSIM: 10.87), and (e) GFRNet (GVGM) (bpp: 0.367; PSNR: 32.58; MS-SSIM: 10.83).

Fig. 17. Generalization experimental results of different modules on the San Francisco dataset. (a) PSNR and (b) MS-SSIM.

Fig. 18. OA of the reconstructed image obtained by different compression
methods in remote sensing scene classification (the dataset used is NWPU-RE-
SISC45).

fully proves that the removal of complex background noise,
the increase of the multilevel nature of global features, and the
expansion of the influence of global features have effectively
promoted the compression of remote sensing images. It also
strongly proves the generalization of each module. It is worth
mentioning that the improvement of the PVTCB module on
the baseline network Ballé et al. (factorized-relu) [32] is
surprising. At 1.1 bpp, compared with Ballé et al. (factorized-
relu) [32], Ballé et al. (factorized-relu) (GVGM) [32] and
Ballé et al. (factorized-relu) (QFMR-AM) [32], respectively,
improved 5.6% and 6.7%, while Ballé et al. (factorized-relu)
(PVTCB) [32] reached an astonishing 11.7%. The reason
for this phenomenon is that Ballé et al. (factorized-relu)

[32] does not include a network that can efficiently extract
multilevel global features, and PVTCB just makes up for this
shortcoming.

H. Classification of Remote Sensing Scene Images

In this article, the reconstructed images obtained by different
compression methods are used for remote sensing scene image
classification, so as to verify the effectiveness of GFRNet
from the perspective of application. The dataset selected is
NWPU-RESISC45. The image compression methods used for
comparison include Minnen et al. [31], Minnen et al. (mean)
[31], Ballé et al. (hyperprior) [32], Ballé et al. (factorized-
relu) [32], and Tong2023. The benchmark model for remote
sensing scene classification is EMTCAL. In order to ensure
the fairness of the experiment, the reconstructed images of
different methods were obtained at a bit rate of 0.6 bpp. Fig. 18
shows OA obtained by different methods of reconstructed
images for scene classification of remote sensing images.
In terms of OA, the proposed GFRNet obtains the highest
OA, which is higher 0.37% than that of Minnen et al. [31],
higher 0.37% than that of Minnen et al. (mean) [31], higher
0.37% than that of Ballé et al. (hyperprior) [32], higher 0.73%
than that of Ballé et al. (factorized-relu) [32], and higher than
0.19% than that of Tong2023.

Fig. 19 demonstrates the confusion matrices of recon-
structed images of Minnen et al. [31], Minnen et al. (mean)
[31], Ballé et al. (hyperprior) [32], Ballé et al. (factorized-
relu) [32], Tong2023, and GFRNet when they are used for
remote sensing scene classification. In Fig. 19, the classi-
fication effect of lake, beach, golf course, and intersection
in GFRNet’s CM is better than that of other comparison
methods. This is mainly due to the fact that there are many
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Fig. 19. CM of the reconstructed image by different methods. (a), (b), (c), (d), (e), and (f) correspond to Minnen et al. [31], Minnen et al. (mean) [31],
Ballé et al. (hyperprior) [32], Ballé et al. (factorized-relu) [32], Tong2023, and GFRNet, respectively.

global features in these types of scenes, and PVTCB and
GVGM in GFRNet just enhance the multilevel characteristics
of global features and expand the scope of global features.
Such high-quality global features greatly improve the quality

of the final discriminant features. This is the reason why
the reconstructed image obtained by the proposed GFR-
Net achieves the best performance in remote sensing scene
classification.

Authorized licensed use limited to: Cuiping Shi. Downloaded on November 08,2024 at 04:14:30 UTC from IEEE Xplore.  Restrictions apply. 



5646220 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

TABLE V
COMPLEXITY COMPARISONS OF DIFFERENT COMPRESSION METHODS

I. Complexity Analysis

In order to fairly compare the computational complexity
and resource consumption of different compression meth-
ods, all compression methods are tested on the same
device and in the same environment. The evaluation indica-
tors include parameter, FLOPs, GPU memory, compression
time, and reconstruction time. Here, the input image size
is 3 × 256 × 256. The experimental results are listed in
Table V. Here, M stands for million, G stands for billion,
GB stands for gigabyte, and S stands for seconds. It can
be seen that the parameter of GFRNet is the third least
among all methods. It is worth mentioning that although the
parameter of Ballé et al. (factorized-relu) [32] is less than
the proposed GFRNet, its PSNR and MS-SSIM are much
lower than our method at the same bit rate. By comparing
FLOPs, it can be found that GFRNet has achieved the fewest
FLOPs, which are only 44.27%, 44.70%, 45.19%, 46.13%,
and 17.81% of Minnen et al. [31], Minnen et al. (mean)
[31], Ballé et al. (hyperprior) [32], Ballé et al. (factorized-
relu) [32], and Tong2023, respectively. This fully illustrates
the superiority of the GFRNet. Compared to GPU memory,
GFRNet consumes the most of all methods. The reason for
this is that the design of the two-branch structure requires
a lot of parallel computing, which leads to a large GPU
memory overhead. Comparing the compression time and the
reconstruction time, it can be found that the time consumption
of GFRNet is medium, but at the same bit rate, the PSNR
and MS-SSIM of GFRNet are significantly better than other
comparison methods. In addition, the compression time of
GFRNet is twice as long as the reconstruction time. The main
reason for this phenomenon is that the compressed network
adopts a double-branch structure, which will have higher
computational complexity than the single-branch reconstruc-
tion network. These experiments strongly demonstrate that
GFRNet can achieve excellent rate distortion performance at
a relatively low complexity.

V. CONCLUSION

In this article, a GFRNet is proposed for the compression
of remote sensing images. First, a QFMR-AM is designed
for noise reduction and multilevel information enhancement.
Second, a PVTCB is constructed to capture multilevel global
information. Third, a GVGM is proposed, which is utilized to
calculate a novel LossGVF, and thus, a LossTotal of the network
is constructed. Finally, all the modules and networks in this
article are trained to focus more on global feature extraction

under the guidance of a new rate-distortion function LossTotal.
Compared with other methods, the proposed GFRNet achieves
the best rate distortion performance. Moreover, classification
task is applied to evaluate the influence of the reconstructed
images obtained by different compression methods on the
application, and it is proved that the proposed GFRNet can
provide the best classification performance. This shows that
the proposed method can retain the important information
in remote sensing images more effectively. In the future,
we will explore how to integrate the global feature loss at more
levels into LossTotal in a more reasonable way. In addition,
we will further carry out more detailed hierarchical processing
on the compression and reconstruction process of remote
sensing images. By reducing the information gap between
the latent representation feature and the specific task, the
compression performance of remote sensing images can be
further improved.
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